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vi



1. Introduction

Drive-Reinforcement is a neuronal model developed by Klopf (1988) and his research team

at Wright Laboratory as part of their in-house basic research program in machine intelligence. It is

similar to other neuronal models in that its output is expressed in terms of a weighted sum of its

inputs. Moreover, as in other models, the D-R neuron can be used as a basic processing unit and

building block for a general network topology formed by connecting the input of some neuronal

elements to the output of others. It is different from other neuronal models in that its learning

mechanism has a unique structure. For example, the D-R neuron requires temporal relationships

between training samples, and computes weight changes that are proportional to changes in the

neuronal output and proportional to filtered values of weighted changes in neuronal inputs. Many

neuronal models do not require temporal relationships between training samples, and compute

weight changes that are proportional to the error between desired and actual values for the neuronal

output. These latter models require the use of an 'external' training signal so that explicit function

matching can be performed: weights are adjusted until the actual neuronal output approaches the

desired neuronal output. In contrast, the D-R neuron does not require a desired neuronal output

signal for its weight adjustment algorithm, but it does require a special neuronal input that acts like

an 'internal' training signal. Thus, the interpretation and usage of the input and output signals for

the D-R neuron is different from that of many other neuronal models. Moreover, the derivative

nature of the D-R learning mechanism puts it in a special class of algorithms (Sutton and Barto,

1990) which perform a matching of function-derivatives versus a matching of explicit function

values. Thus, D-R is a complementary neuronal model to those noted above, and this suggests that

there n tay be some applications for which the use of D-R would be preferred.



D-R may be useful at all levels in the hierarchy of control system tasks from actuato, ,zontrol

to pattern recognition and mission planning. Our ultimate goal is the development of machine

intelligent systems that can learn to perform at each level. Our belief is that a biologically based,

evolutionary approach to these problems is required in order to handle the complexity and

adaptability requirements for the associated systems. Once we fully understand how D-R can be

implemented and "grown" to handle increasingly complex problems, we believe it will become

increasingly useful as a basis for machine intelligence. A natural starting point for this

understanding is the application of D-R to low-level, nonlinear control problems since these

problems form the natural building blocks for the higher-level control functions.

The use of D-R in control system applications offers several advantages over standard

nonlinear control techniques, especially when D-R is placed in an unsupervised learning context.

For example, it is often inadequate, difficult and costly to use standard model-based control

techniques when the mathematical description for the controlled physical system and its

environment are either very complex, only partially known or time-varying. Complex systems

have high development costs due to the time required to analyse, design, implement and test the

mathematical models incorporated in the associated controller. Moreover, controllers for complex

systems a., often expensive to modify if the configuration of the system is altered. Partially-known

systems and time-varying systems can lead to reduced and perhaps unacceptable performance due to

the unmodeled dynamic and kinematic relationships and due to the effects of parameters that change

uppredictably over time. Thus, the motivation for the use of D-R in an unsupervised control system

architecture is clear. Potentially D-R could lower development costs due to a reduction in controller

complexity. In addition, by learning to compensate for unmodeled effects and by continuously

adapting to time-varying system characteristics, D-R could increase system performance and

adaptability.

Our investigation of the application of D-R concentrated on its use in robotic control

problems. The nature of the investigation was planned to be experimental and not theoretical, but

we found that a marriage of both theory and practice was crucial to understand and successfully

apply the algorithm. Our studies were generally begun in simulation prior to their implementation
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and testing in hardware because this saves time and promotes safety. Despite this practice, we

started transitioning to hardware early in the program, and backed off after only meager success and

many failures to achieve stable operation of the equipment. Thus, our first transitions to hardware

were premature, but they ultimately helped progress by forcing an increase in both simulation

activity and theoretical understanding about our algorithmic implementations.

The organization of this report is as follows. In Chapter 2, we describe the D-R neuron, its

learning mechanism, and our procedure for processing sensed and commanded data into neuronal

input signals. In addition, we illuminate essential features of the D-R learning algorithm by

discussing its convergence properties. In Chapter 3, we survey our candidate control structures,

from those used in our early experiments to those used in our latest experiments, and we motivate

the progression between them based on the theory from the prior chapter. In Chapter 4, we discuss

the experimental set-up and present detailed results from our successful studies of the on-line

learning of servo-level and trajectory-level controls for robotic systems. Finally, Chapter 5 contains

a restatement of principal results and conclusions as well as our recommendations for additional

work.
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2. Drive-Reinforcement Learning

Cor,%iitioning is a process by which an animal experiences and learns temporal and spatial

ass•', tions among signals or events. These learned associations can iiaclude relationships among

stimuli or between a stimulus and a response. For example, in the well-known Pavlovian or

classical conditioning experiments, a relationship is established between two stirruli: an

unconditioned stimulus (US), defined as a stimulus that is innately reinforcing; and a conditioned

stimulus (CS), defined as a stimulus whose effect on the response can be altered by conditioning.

Typically, the CS in these experiments is presented to the animal in temporal proximity to the US

until the CS is capable of eliciting a response sometimes approximating that elicited by the US

alone. Hence, the US serves as a training signal which is rendered meaningful by an innate

mechanism. The CS is a signal that, through training, becomes a predictor of the US.

Conditioning experiments have yielded a wealth of information about animal learning.

Several conditioned stimuli are often used in the same experiment to produce effects that are more

interesting and subtle than those possible with only a single CS. Hence, conditioning can be a

complex process.

To help understand, explain and predict conditioning phenomena, mathematical models of

these learning processes have been formulated and tested against the available experimental data.

Drive-Reinforcement, a neuronal model of classical conditioning, is one example. It uses a model

of a single neuron to produce effects analogous to the behavior of whole animals in classical

conditioning experiments. The modeled inputs to the neuron are: 1) conditioned stimuli mediated

by synapses with variable efficacy, and 2) unconditioned stimuli mediated by synapses with fixed

efficacy. It is the plasticity of the synaptic connection for each CS and the non-plastic behavior of

the synaptic connection for each US which allows for learning and for the storage of acquired
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knowledge. In this structure, a learning mechanism scales the contribution of each CS to the

neuronal response while the contribution of each US to the neuronal response remains fixed. In

this way, the response to a CS can change through conditionting while the response to a US acting

alone can not.

Although the conditioned and unconditioned stimuli used in classical conditioning

experiments may be characterized as binary functions (e.g., either a sigral is present or it is not),

they may also be viewed as real-valued. As an example, consider defining a CS input to a D-R

neuron as the output of a low-level sensory neuron. The sensory neuron may receive inputs relayed

from several receptors, each being capable of responding to stimuli encountered in some spatially

localized, multidimensional section of an associated sense organ. The region formed by the union

of these potentially overlapping sections is known as the sensory neuron's receptive field. Because

the same stimulus could simultaneously reach more than one receptor site, the output of the sensory

neuron can also vary with the location of the stimulus within the receptive field. Hence, CS-

triggered signals in a model would have to be real-valued to capture this behavior.

Each CS and US in our control studies will be treated as a real-valued function of the sensed

and commanded signals that are communicated in the physical system under control. Although the

US will be computed directly from these quantities, the CS will be computed in a way which is

analogous to the simplified sensory neuron processing described above. In paricular, each CS will

have associated with it a 'receptive field' type subset of the space describing the range of the sensed

and commanded data. The CS will be identically zero for any signal combination within its

receptive field and otherwise generally nonzero and dependent on the location of the data relative to

the interior of its receptive field. The motivation behind this is simply that we would like each CS

to respond to a limited region within the range of the data so that they can selectively represent

features of the data for presentation to the D-R neuron. These features would generally be more

useful than the raw signal values as potential predictors of the US.

This chapter is divided into three sections: Section 2.1 describes the D-R neuron as it was

used in our work; Section 2.2 details the receptive field structures that decompose sensed and
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commanded quantities into the conditioned stimuli presented as neuronal inputs; and Section 2.3

discusses % hat we have learned about the convergence of the D-R learning mechanism.

The following notations and conventions are used in this chapter. Unless otherwise

indicated, all time-dependent functions have the form v:3+--4% where 3+ denotes the set of ?ositive

integers and 91 denotes the set of real numbers. For such functions we let !v(t)l denote the absolute

value of v(t), Av(t) = v(t) - v(t-l) and v(t)+ = max{O,v(t)}, for all tE 3.

2.1 Mathematical Specification

Our studies are based on a neuronal model which is a slight extension to a special case of the

general neuronal model proposed by Klopf (1988). Our intent is to describe it here in a way which

illuminates the similarities and differences to the original formulation. Deviations from the original

notation were only necessary in order for us to clarify important points in later sections of this

report, and were kept to a minimum.

Output Equation

The neuronal input/output relationship that we assumed is similar to that found in Klopf

(1988). We too take the view that neuronal signals are real-valued to reflect some measure of

neuronal firing frequency, and we express the neuronal output as a function of a weighted sum of

neuronal inputs. Here, the neuronal inputs include both conditioned and unconditioned stimuli, and

each weight reflects the efficacy of the synapse through which the corresponding input is

transmitted with the weights corresponding to excitatory synapses held strictly positive and the

weights corresponding to inhibitory synapses held strictly negative.

We specialize the general neuronal input/output relationship in the following ways. First,

we present each conditioned stimulus (CS) to the neuronal model through both an excitatory

synapse and an inhibitory synapse, analogous to the example found in Klopf (198hj. Thus, for the

ith CS, denoted by xi, both an 'excitatory weight' wi÷ and an 'inhibitory weight' wi- arc available

to the D-R learning mechanism for modification. Second, we present only one unconditioned

stimulus (US) to the neuronal model and specify that this US, denoted by u, have a synaptic

efficac, equal to one. This is justified since unconditioned stimuli are assumed hardwired with
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innately determined fixed gains and because we can consequently scale any US and/or combine

multiple US sources prior to their introduction into a neuronal model. Each CS could also be

scaled, but the associated weights must remain variable and only alterable by the D-R learning

mechanism. Neither of the above specializations appear to limit our application of D-R.

Two minor extensions vwere made to the general neuronal input/output relationship found in

Klopf (1988). These, in our opinion, do not change the theoretical intent of D-R because the Drive-

Reinforcement learning mechanism is not affected. Moreover, as we will see in Section 2.3, these

changes ,llow for convergence characl .,ristics similar to those cited in Klopf (1988). One change

adds flexibility to the way the conditioned stimuli and the unconditioned stimulus are summed in the

D-R neuron and the other change is the introduction of a time-dependency to the (originally

assumed constant) neuronal threshold, 0. In particular, in the absence of any limiting, the neuronal

output (postsynaptic signal level) is given by

n
y(t) = u(t) + g. I wi(t)xi(t) - 6(t) (2.1-1)

i=l

where

wi(t) = wi+(t) + wi'(t), i= 1,...,n (2.1-2)

is the net weight (gain) associated with the ith CS (a presynaptic signal level) at time t, n is the

number of conditioned stimuli presented to the neuron, and gr: {-1,+l) is an application dependent

switch that we set a priori in order to establish a particular relationship between the unconditioned

stimulus and the conditioned stimuli (see Section 2.3). Note that for convenience we are using xi to

denote two separate but identical inputs to the D-R neuron; this notation differs from Klopf (1988)

where the xi, iE f1 ,...,n) are used to represent general neuronal inputs. Equations 2.1-1 and 2.1-2

thus model 2n+l neuronal inputs since each CS makes two synaptic connections and only cne US

is used. The neuronal threshold in equation 2.1-1 was often set to zero in our work, but adding the

possibility for time-dependent behavior allows one to adjust the neuronal output during learning.

As described in Section 2.3, this helps us achieve other desirable, application dependent objectives.

7



Klopf (1988) defines neuronal drives as weighted presynaptic signals and defines reuronal

reinforcers as weighted changes in presynaptic signals. In particular, from equations 2.1-1 and

2.1-2, the acquired (learned) neuronal drives are the products wi+(.)xi(.), wi-(')xi('), i = 1 ,...,n and

the only primary (innate) neuronal drive is u(.). Similarly, the acquired neuronal reinforcers are the

products wi+(-)Axi(.), wi'(.)Axi(.), i = 1,...,n and the only primary neuronal reinforcer is Au(-).

Output Limiting

Upper and lower bounds on the neuronal output are essential parts of the D-R neuronal

output description. They are biologically meaningful since an upper bound corresponds to a

maximum neuronal firing frequency and a lower bound greater than or equal to zero avoids the

necessity of interpreting negative neuronal firing frequencies. More importantly, a non-negative

lower bound is required to produce the correct behavior in conditioned-inhibition experiments since

it prevents a CS with a negative association from extinguishing when presented alone (see Klopf,

1988; Sutton and Barto, 1990).

In our earliest work we tried to maintain a strict lower bound of zero or greater for the

neuronal output despite the fact that negative control signals were desired. This was achieved by

bifurcating the neuronal path using a second identically structured neuron with a US equal to the

additive inverse of the first neuron's US. The potential for generating both positive and negative

control signals was allowed by subtracting the strictly positive output of the second neuron from the

strictly positive output of the first neuron. As an alternative to this method, we also tried adding a

constant to the US, prior to its introduction into the neuronal model, to force the neuronal output

positive. By decrementing the neuronal output, after limiting, by the same constant, both positive

and negative control signals could be generated without violating the zero lower bound on neuronal

output. Neither approach appeared to benefit the learning process, however, for our applications.

As a result, efforts along these lines were dropped in favor of simply adopting a "negative

threshold" value for neuronal output, thereby allowing the neuronal output to take on negative

values. Although this worked well in our work, it is generally not justified, and a more thorough

investigation of output limiting is required.
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Bounds on the neuronal output have also been important in our most recent experimental

work, but only from a practical point of view. Since unbounded outputs are generally unsafe in a

real-time environment and since bounded outputs will often provide the system with a chance to

recover from short-term divergent behavior, it is generally prudent to bound the neuronal output

from below and above. We have found, however, that the algorithm generally performed better

when the limits were not achieved. In fact, we usually set the upper and lower limits such that they

were encountered only if the system reached a point of instability. Because neuronal limits were not

encountered in successful runs, they are not critical to understanding why D-R works in our

applications. In fact, we do not show bounds in equation 2.1-1 as this would only obscure the

important relationships found in this expression.

Learning Mechanism

The neuronal learning mechanism that we assumed in all our work is identical to that found

in Klopf (1988). Given £ >0, the excitatory and inhibitory weights are adjusted according to

wi+(t+1) = max {C, wi+(t) + Ay(t)y cj Iwi+(t-j)I Ax,(t-j)+ }, wi+(0)= F_, il, ..= n
j=I

(2.1-3)

wi-(t+l) = min {-e, wi'(t) + Ay(t)ya cj Iwi-(t-j)l Axi(t-j)+ }, wi(0) =-E, i = 1,...,n
j=l

where 'r is the longest interstimulus interval over which delay conditioning is effective, and cj > 0 is

a learning-rate constant proportional to the efficacy of conditioning when the interstimulus interval

is equal to je (1,....t). Note that wi+(t) > e and wi-(t) -< -,, i= 1,...,n for all tr .3+, so that the

excitatory weights remain positive and the inhibitory weights remain negative. In addition, since

wi(0) = wi+(O) + wi-(0) = 0, i = 1,...,n, the acquired drives do not contribute to the initial neuronal

response.

The sums in these expressions are finite impulse response filters which have the effect of

smoothing and scaling the data given by the products wi+(.)Axi(.)+, wi-(-)Axi(-)+, i =.... ,n.
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They are responsible for enabling learning during each of the T time intervals following any strictly

positive change in any presynaptic signal level, and are responsible for disabling learning

otherwise. This is because the sums are always nonnegative and every Axi(t)>O, iE { ,... ,nI

contributes to its associated filter value for T time intervals. Hence, a synapse is 'eligible' (see

Klopf, 1988) for modification during each of the -t time intervals following any strictly positive

change in its associated presynaptic signal level, and is ineligible for modification otherwise. If a

synapse is eligible, then either the resulting change in its synaptic efficacy is proportional to Ay(t),

the change in the postsynaptic signal level, or a weight limit is achieved and the synaptic efficacy is

pegged at the limit.

Our only modification to equations 2.1-3 was the addition of an upper bound on the weight

values. As in the case of the bounds for the neuronal output equation, this change was mostly for

convenience and safety. In practice, the upper bound on weight values was only achieved when

instabilities occurred. As a result, explicitly writing these bounds in the above equations would

obscure the true nature of the D-R learning mechanism, and for this reason we do not express them

in equations 2.1-3. On the other hand, there may be some theoretical significance to the inclusion

of an upper bound on synaptic efficacy. See Section 2.3 for details.

2.2 Receptive Field Structures

Our receptive field structures are used to transform sensed and commanded data into

conditioned stimuli. The placement of this transformation relative to the D-R neuron is illustrated in

Figure 2.2-1. In this figure, x=(Xl,...,Xn) is a time-dependent vector representing the conditioned

stimuli presented to the D-R neuron, and s=(sl,...,sd)E S is a time-dependent vector representing

the sensed and commanded signals where d is the number of signals and S is the space of all

possible signal inputs. Examples of sensed quantities include the position, velocity and acceleration

of an object, the distance to an obstacle, the frequency of a vibration, the temperature and humidity

of a room, and any particular features of our environment that we need to extract or directly measure

for purposes of on-line learning and control. Commanded data often includes the desired time

histories of the sensed quantities or higher level goals and objectives for system behavior.
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Figure 2.2-1. The D-R Neuron and Receptive Field Structure.

The conditioned stimuli will generally be multivariable, nonlinear functions of s. This is

because typical control system applications require the representation of complex mathematical

relationships, and we will use the weighted sum of these neuronal inputs, as computed by the

neuronal model, to describe them. Linear, decoupled functions of s are a special case of our general

transformations, but their usage would be equivalent to passing sensed and commanded data

directly to the neuron and would have limited value in the work we present here.

When expressed in terms of s, the conditioned stimuli xi(t)=~i(s(t)), 1i:S--01, i-1,... ,n can

be viewed as basis functions for an n-dimensional linear space. Thus, the sum in equation 2.1-1

would have the capability to exactly represent any scalar function belonging to the span of the set

given by ({i(s), i=l,...,n: s = (sl,...,sd)e S), and could be used to predict or approximate the

primary drive u. Approximation accuracy is improved by increasing n and by selecting nonlinear

basis functions which are more representative of a class of functions to which u belongs. In this

way, highly nonlinear functions may be represented in our linear space.

The 'support' of each basis function is a subset of the input space S defined by the set

sup(7i)=closure(se S: 7i(s)*O), iE { l,...,n). It is this subset of S that we call a receptive field.

In particular, it is the receptive field associated with the conditioned stimulus xi, ie { 1 ,...,n) .

Thus, in analogy to the receptive field of a sensory neuron, the conditioned stimulus xj(t)=Rj(s(t)),

iE f 1,...,n) will be identically zero if s(t)E sup(•i), and otherwise generally non-zero and

dependent on the location of the s(t) relative to the interior of the set sup(7i). Examples of receptive

fields and the corresponding basis functions are provided later in this section.
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Generally our receptive fields will be overlapping. They do not have to cover the entire

input space because there are regions of S that the physical system will never encounter in practice.

Ideally, we would ignore these regions and concentrate the receptive fields in either the most active

regions or in regions over which control system parameters vary most rapidly. However, in most

applications, we do not have the a priori knowledge required to make these decisions, and must

usually be content to uniformly partition the input space so that all subsets of S are equally

represented.

We now examine our basis functions in detail, beginning with the consideration of the case

in which each CS is a function of only one component of s, and then proceeding to the multivariable

case where each CS is a function of multiple components of s. The section is concluded with an

examination of the relationship between these transformations and those used in the Cerebellar

Model Articulation Controller (CMAC) neural network (Albus, 1975). This is important because

much of our earlier work was based on this latter architecture.

One-Dimensional B-Splines

Consider the case where d=l and S is the interval [a,b] for some a,be 9%. Although there

are many linear function spaces from which to choose, we restrict our attention to spaces of

relatively smooth piecewise polynomials: the polynomial splines. The order of a polynomial

spline, denoted by m, is defined as the number of coefficients required to represent the polynomial

pieces. The polynomial pieces are joined at values of se S called knots. For example, in our work

we select k knots given by (a+ihe S, i=l,...,k), h=(b-a)/(k+l) so that the input space S is

uniformly partitioned into k+l intervals of length h.

Low-order polynomial splines are ideal for real-time control problems because the elements

of these spaces are quick to evaluate and easy to manipulate due to their polynomial character.

Moreover, every continuous function on a compact interval can be approximated arbitrarily well by

polynomial splines of any order provided a sufficient number of polynomial pieces are allowed

(Schumaker, 1981). Hence, increasing the number of knots is sufficient to improve the

approximation power of the polynomial splines.

12



We use only the smoothest space of piecewise polynomials of order m with k genuine knots

(i.e. the knots would disappear if the polynomial pieces were joined together any smoother). For

example, if m=l the splines are discontinuous (at the knots) and if m>1 the splines are continuous

with m-2 continuous derivatives. This is a real linear space of dimension n=m+k. The most

attractive basis for this space are the normalized B-Splines (Schumaker, 1981) because they have

compact support and are on!y non-zero over m spline-knot intervals. This implies that the length of

the corresponding receptive field is only mh units long, and that the effects of the synaptic weights

in our problem can be strongly decoupled. Ultimately, this has a very positive impact on the

efficiency of the D-R learning mechanism. Moreover, our assumption of uniform knot spacing

leads to substantial savings in the computation of the basis functions because all the basis elements

are constructed as translated versions of a single piecewise polynomial funcdon, Nm:%t--4 9. In

particular, given s(t)e S=[ab], the values of the basis elements are computed by

li(s)= Nm(V-+m-i), i=l,...,n (2.2-1)

where, for example, the Nm for m=1,2,3,4 are

1 , O_<z < 1 2 z O' 0 .z• I5

No(z)w= N2(z){ 2- z, I 5 z < 2
0, otherwise, 0, otherwise,

(2.2-2)

z 2/2, 0 z<! 1 1z36, 0 O5 z <Z 1

N3(z)=, -z2+3z-1.5, I < z < 2 N4(W -z3/2+2z2-2z+2/3, 1 < z < 2
N 3 (3- z), 2 z 3), 2 z 4
0, otherwise, 0, otherwise.

Figure 2.2-2 illustrates the basis functions for m=1,2,3,4 which are active over an arbitrary spline-

knot interval indicated by the shaded region. Notice that these functions are non-negative valued

and that at most only m of them are active at any one time. Moreover, they form a partition of unity:

the (non-weighted) sum of the basis functions, evaluated at any input value, is equal to one.

13
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Figure 2.2-2. One-Dimensional Receptive Field Functions.

The general properties implied in Figure 2.2-2 apply to all B-splines, and are inherited by

the conditioned stimuli in our problem. In particular, for any tE 3+, xi(t)=ýi(s(t))>0, i=l ,...,n and
n n
Y xi(t) = R •i(s(t)) = 1. The small support property allows for the added benefit that at mosti=l i=l

only m conditioned stimuli are non-zero and active at one time. This decoupling effect helps to

isolate features of the sensed and commanded signals so that learning is more efficient.

The above discussion also applies to the case where d>l and the sensed and commanded

inputs to the control system are treated as uncoupled quantities. In this event, there would be a

different set of conditioned stimuli associated with every component of s=(sl ,...,sd)e S, and each

of these sets would follow the one-dimensional basis function construction outlined in this section.

The total number of conditioned stimuli presented to the D-R neuron would then equal the sum of

the number in each set.
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Tensor-Product B-Splines

For the general multivariable case where the components of s are not independent, we need

to construct a space of multidimensional splines. The tensor-product of one-dimensional spaces of

polynomial splines (S.,,,umaker, 1981) is often used for this construction because it preserves many

of the algebraic properties of the one-dimensional polynomial splines.

Consider the case where S is the hypercube {s=(sl,...,Sd): Sje [aj,bjl, j=l,...,d) for some

aj,bjE 9t, j=l,...,d. Since our tensor-product spaces are derived from our one-dimensional spaces,

we need to specify parameters which are analogous to those in the previous section. In particular,

for j=l,...,d: define kj knots in the interval 1aj,bj] such that hj=(bj-aj)/(kj+l) is the spacing between

the knots, and let mj be the order of splines that are representable along the jth coordinate direction.

The space of tensor-product polynomial splines is easily constructed as the span of one-dimensional
d

B-spline products. It is a real linear space of dimension n = fI (mj+kj). Products of one-
j=1

dimensionai B-splines are computanonally efficient basis functions for this space because they too

exhibit small, compact support. Moreover, due to our uniform grid structure, they are calculated by

translations of a single function. Given s(t)e S, the values of these basis elements are computed by

341i2...id(S) = II Nmj. +mj-ij ) ij=l,....mj+kj, j=l,....d. (2.2-3)
j=1

Figure 2.2-3 illustrates the shape of these basis functions for d=2 and ml=n2=l,2,3,4.

The n conditioned stimuli associated with these basis functions at time t are given by

Xi(i 1. .id)(t)=xili2...id(S(t)), i j=l,...,d where the mapping i(il,...,id)r { .,...,n)

computes a one-to-one correspondence between the indices of x and i. They too inherit some of

the properties that are passed down from the one-dimensional polynomial splines. In particular, for
nany tE 3+, they are non-negative and form a partition of unity: xi(t)>O, i=l,...,n and • xi(t) = 1.

i=l

d
Furtheýrmore, due to the small support property, at most only nl mi conditioned stimuli are active

j=1

(non-zero) at one time.
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Figure 2.2-3. Two-Dimensional Receptive Field Functions.

CMAC-Based Representations

A deterministic view of the pre-neuronal processing that is performed in the CMAC neural

network indicates that it employs the use of receptive field functions similar to our B-splines with

mj=l, j=l,...,d. The main difference is that it overlaps layers of these complete basis spaces along

the main diagonal of the hypercube S. This has the advantage of adding generalization to this

space, but it is the only space presented above without the required overlapping receptive fields.

We stopped using the CMAC-based receptive field functions for the same reason we don't

use the piecewise constant spaces presented above. Control problems generally require the

representation of smoother functions, and it was more natural to resort to a smoother function space

than to use CMAC on a finer grid. Generalizations of the CMAC receptive field functions, based

on smooth polynomial splines, have been examined, for example, in Lane, Handelman, and

Gelfand (1992), but we did not have the opportunity to fully explore their use with D-R.
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2.3 Convergence Properties

When considering applications of D-R, several questions come to mind. For example, what

classes of problems can it solve? How is it best implemented in terms of network topology and use

of other neuronal structures? Under what conditions and to what 'solution' will the D-R learning

mechanism converge? How fast does it learn, can it be made to learn (converge) faster, and can

unstable learning be prevented? How does it compare to other methods for solving the same

problems?

One accomplishment in our work was the gaining of an understanding of the convergence

properties of the D-R learning mechanism. This was essential to the successful implementation of

D-R in our application, and it led to an understanding of whole classes of problems which D-R

could solve. There was no attempt to develop a rigorous theoretical framework for convergence

results, but we now have good experimental insights into what makes D-R work, we have accurate

heuristic explanations as to why it works, and we know what it is doing when it does. Moreover,

we have found ways to dramatically improve its convergence rate through only slight modifications

to the D-R learning algorithm. Though these modifications were not implemented and tested in

hardware, we are now convinced that D-R can be used effectively and reliably to solve large classes

of engineering problems.

The starting point in the development of D-R was not to solve a particular class of problems,

but was to model natural biological learning processes. Thus, in the derivation of the D-R learning

algorithm, there were no performance indices being minimized, no functions being approximated,

no variables being controlled, and no parameters being estimated. In fact, contrary to the

formulation of many other neural network models applied in engineering practice, standard

engineering methodologies were not used to develop the D-R learning mechanism. Furthermore,

the association between classical conditioning and classical control was not clear at the outset. What

'problem' was the D-R learning mechanism trying to solve? This question had to be answered in

the context of typical control engineering problems before successful implementation strategies

could be developed.
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Heuristic Interpretation

We use the term 'convergence' loosely, and say that the D-R learning algorithm has

converged once its synaptic weights have stopped changing. This definition allows us to work

backwards, to discover the problem being solved by D-R through an examination of the properties

of the 'solution' given by the final weights of a converged algorithm. To derive conditions on these

final weights, we begin with equation 2.1-I and see that the change in the output of the D-R neuron

at time t is given by

n
Ay(t) = Au(t) + g.t • [wi(t)Axi(t)+xi(t- l)Awi(t)] - AO(t). (2.3-1)

i=l

This is used in equations 2.1-3 to calculate the weight values at the next sample time. In particular,

in the absence of any weight limiting, equations 2.1-2 and 2.1-3 indicate that the new net weight

(gain) associated with the ith CS at time t+1 is given by

wi(t+l) = wi(t) + Ay(t) ai(t), i = 1 ,...,n (2.3-2)

where

=i(t) cj [wi+(t-j)-wi-(t-j)) Axi(t-j)+, i= 1,...,n. (2.3-3)
j=1

Clearly, ai(t)_>O since cj>O, j=l,...,T and since wi+(t)>!c, wi-(t)<-E (EA>), i=l,...,n for all tE 3÷.

In particular, ai(t)>O if and only if Axi(t-j)>O for some je (1 ...... rt, and til(t)--0 otherwise. Hence,

equation 2.3-2 is also qualitatively accurate for the cases in which we achieve the lower bounds on

the magnitudes of the synaptic weights. That is, if cti(t)>O, then wi will either increase, decrease or

stay the same based on whether Ay(t) is positive, negative or zero. Similarly, if oXi(t)=O, then wi

will not change regardless of the value of Ay(t). Except for the transitory periods in which weight

limits are approached and obtained, equation 2.3-2 is quantitatively accurate as well, and in fact is

exact in the limit as E>O approaches zero. Consequently, we may rely on equation 2.3-2 for much

of our analysis.
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It is clear from the above discussion that D-R involves a temporal notion of convergence.

Weight changes can occur at any time t in the set T-{ t -3+: ai(t)>0 for at least one i E I 1,...,n ),

but do not occur at any t in the complement set TC-={t r=!3+: ai(t)=O, i = 1,...,n). Thus, the D-R

learning algorithm converges if and only if there exists a tcr S3+ such that Ay(t)=O for all t >tc, tE T.

This strict notion of convergence is generally not achieved in practice due to no;se, inaccurate

sensor measurements, algorithmic round-off errors and the failure of receptive field structures to

exactly represent the primary drive data. However, it does indicate what must happen qualitatively

in any proper implementation of D-R. The algorithm does not control what happens to Ay(t) for

te Tc, but seeks to force Ay(t) to zero for te T. As a result, the magnitude of Ay(t), te T serves as

an approximation to a temporal descent function which the D-R learning algorithm must minimize in

order to achieve convergence (of the weights).

There are other possible interpretations of this result. For example, one could say that the

D-R learning algorithm is correlating changes in the acquired drives with changes in the primary

drives by uncorrelating changes in the neuronal output (on the set T) with earlier, positive changes

in the neuronal inputs associated with the acquired drives. Alternatively, one could say that the

temporal slopes of the acquired drives are being matched to the temporal slopes of the primary

drives on the set T. By viewing the primary drive as a function of sensed and commanded signals,

u(t)=Z(s(t)), U:S--9t, one could also present a spatial version of this slope-matching using the

function spaces described in Section 2.2, but such an analysis is beyond the scope of this report due

to the special directional derivatives that are required to handle the slope discontinuities present in

some of the basis functions. In all cases, the algorithm requires that the primary (innate) drive (any

neuronal input mediated by a nonplastic synapse) act like an 'internal' training signal. Moreover, in

all cases, slightly different functional relationships are formed dependent on the value of the

application dependent switch gE (-1,+1). In particular, if lg=-l, the relationship is direct, and the

weighted sum of the changes in the conditioned stimuli approaches, through D-R learning, the value

of the change in the US (primary drive). If pt=+l, the relationship is indirect, and the weighted sum

of the changes in the conditioned stimuli approaches the additive inverse of the value of the change

in the US. Either way, it is the primary drive which D-R is modeling.
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Final Values

Since our strict definition of convergence is generally not achieved in practice, we normally

accept approximate solutions. In fact, Ay(.) can only be expected to approach zero if theie exists

weights wi*E 9(, i= ,...,n satisfying

n
0 = Au(t) + g wi*Axi(t) - AO(t) (2,3-4)

i=l

for all t>-tc, tET. This depends on whether or not the acquired drives can represent signals that

have the functional characteristics of the primary drive. Noise and other inaccuracies contribute to

this common neural network problem so that weights keep varying after reasonable convergence

has been obtained. To correct for these errors, an exponential decay is often applied to learning

coefficients. However, this is inappropriate for on-line learning schemes which need to adapt to

time-varying properties. Fortunately, in our work, the variations in Ay(.) about zero decreased to

acceptable levels of error, and no modifications to the D-R learning algorithm were required.

In order to study the final values for the neuronal output, we will assume that the D-R

learning algorithm strictly converges, in this case, it is clear that y(.) must be piecewise constant, in

the discrete sense, and only allowed to change in value at tE TC. This implies that given a subset T*

of T containing contiguous values of time greater than tc. a relationship of the form

n
p = U(t) + g wi*xi(t) - 0(t) (2.3-5)

i=l1

must hold for all tET*. Here, wi*e 91, i=l,...,n are the final weights of the converged algorithm

and •E 91 is the value of the output of the learning neuron on T*. Generally, p is unconstrained in

the original formulation of the D-R learning algorithm whe.,ever the acquired drives can represent

arbitrary constant functions on all of T*. Hence, its final value can be dependent on many factors

including the temporal sequencing of neuronal input signals. On the other hand, the value for p is

unique if constant functions do not have a representation in terms of the acquired drives on T*.
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Figure 2.3-1. Convergence in Classical Conditioning Experiments.

An example showing the relevance of the above ideas to classical conditioning is given in

Figure 2.3-1 where the neuronal drives are drawn in continuous time as they might be viewed by

the D-R learning mechanism and *'s indicate time values in T*. Here, n=1, lA=+1 and 0(.)=O so

that the association between the slopes of the acquired and primary drives is learned as an additive

inverse relationship, but only in the shaded region. Thus, the CS 'predicts' the US. Alternatively,

the relationship may be viewed as direct if we invert the acquired drive and translate it by p units, as

in the lower graph. Note that p is uniquely specified because the acquired drive is not able to

represent arbitrary constant functions on the set T*. In particular, since u(.) is a fixed pulse acting

alone, p must equal the amplitude of u(.). Hence, the final net weight wj* is unique and given by

equation 2.3-5 at any value of te T* where the CS is acting alone. Classical conditioning

relationships are generally more complicated than this example, but similar observations apply.
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The above ideas were also important in our most recent control system studies where we set

I=- 1 to establish a direct relationship between the slopes of the primary and acquired drives In this

work, we selected B-spline basis functions of order m>1 and specified that the associated receptive

fields cover all of the input space S. Since our basis functions form a partition of unity, a decrease

in the value of one basis element leads to an increase in the value of another. Consequently any

motion in the system always results in a positive change to at least one CS. Hence, if the system

moved, it learned, and since we always kept our systems in motion, Tc was empty and all elements

of T* were contiguous. The downside of having a partition of unity is that constant functions can

be represented by the acquired drives on T*. Thus, p becomes a free parameter wnose value is

subject to the conditions of the training process. In our servo-level control experiments, we

counteracted this by strategically removing basis elements near the origin, , constrain p to zero. In

our trajectory-level control experiments, we varied the neuronal threshold to constrain p to zero. In

particular, we assumed that we knew U(so) and ji(so), i=l,...,n for some so0 S, and calculated

n

0(t) = ft(so) + gt w i(t) 5Fi(sO) (2.3-6)
i--I

at every time-step. This works well provided values of s near so are encountered during training.

Assuming the D-R learning algorithm strictly converges, it generates only one solution, but

even slight modifications to training data can result in a different set of weights. This is because the

solution to the problem which D-R is solving may not be uniquely expressed so that final weight

values are generally dependent on initial weight values and the temporal sequence of neuronal input

data. The potential for multiple solutions is partially due to the use of both inhibitory and excitatory

weights with the same basis function. That is, there are many values for wi÷ and wi" that produce

the same net weight wi=wi++wi", i = 1,...,n. Multiple weight solutions can also exist if several

complete polynomial spline spaces are used to transform the same data. The basis functions for one

space may not be totally independent of those for another, and the weights corresponding to

dependent basis functions could share, in varying degrees, the representation of the primary drives.
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Descent Conditions

We are now in a position to derive conditions under which the learning algorithm achieves

descent. Based on the prior discussion, we will assume that the magnitude of Ay(t), tE T serves as

an appropriate temporal descent function which the D-R learning algorithm must minimize with

respect to the weights in order to achieve convergence. A simple approach to discovering a descent

condition would be to examine how Ay(t), in equation 2.3-1, changes with the substitution of the

weights calculated for the next time-step. In particular, if we substitute the 'new' weight, calculated

by equation 2.3-2, for the 'old' weight in equation 2.3-1, the projected value of Ay(t) as a result of

the weight update is given by

n
Ay(t)lnew weight = Ay(t) 1 + g ai(t)Axi(t)]. (2.3-7)

This is a reasonable substitution because wi(-) and Awi(.) are independent discrete variables, and

hence, can be independently varied. Moreover, we have found through extensive experimental

work that this equation is incredibly accurate and dependable as a basis for stability analysis and

learning rate calculations. The term enclosed in the brackets determines whether to expect an

increase or a decrease in Ay(.) as a result of the weight change, and can be used in an on-line setting

to successfully alter the convergence characteristics of the D-R learning mechanism.

Although we did not take advantage of equation 2.3-7 for any of our work, we have used it

to explain our successes and failures, and the convergence properties of D-R when used to model

classical conditioning phenomenon. Note that since ca(t)Ž,O, i = 1 ,... ,n for all t r !+, the entire fate

of the D-R learning mechanism rests with the sign of the Axi(t), i = 1,....,n terms, especially if only

a few are active at any one time. For example, in the delay conditioning result of Figure 2.3-1, we

have gt=+l, n=1 and AxI(t)<_0 for all tc T*. Thus, convergence is likely for reasonable learning

coefficients and a properly scaled CS. In our recent experiments, gi=-1, and usually Axi(t)>O when

ac(t)>O, i = 1,...,n because we used relatively large receptive fields with smooth basis functions so

that the positivity of these functions were strongly correlated. Thus, again, convergence was likely.
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We are now in a position to propose a slight modification of the D-R learning algorithm

which increases its convergence rate. This modification was not used to obtain any of the results in

Chapter 4, but it does provide some additional insight into the learning mechanism itself. The

discussion should be viewed as preliminary because we have not examined its impact on the ability

of D-R to model classical conditioning phenomenon, and use of the modification may result in

behaviors not quite consistent with the experimental evidence. The motivation for adopting this

variation on the weight update formula would be to accelerate the convergence of the algorithm in

complex control problems. We have observed substantial performance improvements in simple

problems, but have not conducted a thorough study to determine its true effectiveness.

The modification is simple and motivated by equation 2.3-7. If we multiply the sum. in

equations 2.1-3 by

g , Axi(t)-<0
i(t) = Ax(t)>O, (2.3-8)

for tF 5+, i { I ,...,n), then it is easy to show that the equivalent expression to equation 2.3-7 is

[ n1
Ay(t)lnwweight = Ay(t)j1 - Xcci(t)lAxi(t)l. (2.3-9)

Thus, if the multiplier given by equation 2.3-8 is used, the convergence of the D-R learning

mechanism would no longer be dependent on the sign of the changes in the conditioned stimuli. In

addition, the parameter Ig would no longer be required. One may keep 11 for the convenience of

having net weights of a certain sign, but convergence is not dependent on its value. The only

requirement for descent is that the sum in equation 2.3-9 has a value between zero and two.

Reasonable learning coefficients and the incorporation of an upper bound on the synaptic weights

would guarantee this since there are already inherent bounds on the Axi(t), i = 1 ,... ,n due to the

compact construction of S and the partition-of-unity property of B-splines.
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3. Candidate Control Structures

It is apparent, in the light of Section 2.3, why our earliest network topologies implementing

D-R did not succeed, and why our latest network topologies work so well. In this chapter, we

outline the progression of thought from our first experiments to the most recent, and emphasize

what was important in transitioning from one network to the next. Although we attempted to

generalize the character of our successful architectures, they should only be viewed as examples.

There are many possible networks which could properly implement D-R, each representing

different classes of contru', strategies or different implementations of the same strategy. We have

chosen one of the more popular control strategies, that of 'feedforward' control, as the basis for this

work, but it is by no means the only possible control strategy and our final network topology is not

the only useful implementation of D-R which executes it. However, this work does provide

evidence that D-R can be effectively used in control system applications.

Before proceeding, we note that in the control systems literature, 'feedforward control' does

not imply the absence of feedback. Feedforward controllers often use sensory feedback since their

function is to generate the 'large' control signals required to rapidly adjust to large discrepancies

from a desired output. In particular, our feedforward controller uses sensory data to learn to predict

the control signals required to accurately track the desired output. It can only express a true

feedforward (open-loop) relationship when weights reach steady-state and learning has stopped.

This chapter is divided into three sections: Section 3.1 describes the control system

architecture of our earliest experiments; Section 3.2 details the changes to this architecture that were

required to achieve satisfactory results in our servo-level control experiments; and Section 3.3

discusses the final control system architecture as it was used in our successful trajectory-level

control experiments.
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Figure 3. 1 -1. Configuration for the Mass/Spring Experiment.

3.1 Early Experiments

One of the earliest experiments that we performed was on the single degree-of-freedom test-

bed depicted in Figure 3.1-1. The hardware consisted of a DC torque motor, a spring and a weight,

connected in series with a nylon thread. The motor housing contained a tachometer to measure the

speed of the motor shaft and a brake to prevent the motion of the mass until the start of an

experiment. The position of the weight was determined by wrapping the thread a few times around

the input to a potentiometer. The velocity and acceleration of the weight was determined through

the finite differencing of the position data.
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The control system for this test bed, also sl'own in Figure 3.1-1, consisted of a parallel

connection of two D-R neurons, each capable of generating only non-negative outputs in order to be

consistent with the notion that neuronal firing frequencies are non-negative. The outputs of these

neurons were then subtracted in order to produce both positive and negative torque commands to

the motor. The conditioned stimuli for each neuron were calculated using a CMAC receptive field

structure which used motor velocity, and the position, velocity and acceleration of the weight as

inputs. The error between the desired and actual weight position was used as the primary drive on

the neuron generating positive torque commands. The additive inverse of this error was used as the

primary drive on the other neuron. In the absence of learning, the primary drives were totally

responsible for maintaining the stability of the system, and achieving some minimal level of

performance.

The first experiment with this test bed required that the D-R neuron learn a constant function

which would offset the gravitational force acting on the mass of the weight. The desired weight

position was set equal to its initial rest position, and the brake on the motor was released to start the

trial. The trial would end when the mass came to rest. This experiment appeared to yield promising

results. Without learning, the weight would drop about eight inches and oscillate about its

equilibrium position where the primary drive would generate enough torque to exactly offset

gravity. After about 100 trials, D-R learned to generate a relatively flat torque profile, primarily due

to the motor velocity signal, and prevented the weight from dropping more than an inch before

coming to rest.

The second experiment with this test bed required that the D-R neuron learn a step function

in the absence of the gravitational effect. After the primary drives were used to reach equilibrium,

the desired weight position was increased by about three inches. Without learning, the primary

drive generated an underdamped response, but eventually settled to a position three inches higher

than the original equilibrium. However, after about 20 trials, D-R learned to generate a torque with

the acquired drives that exactly offset the new torque due to the primary drive. Thus, since their

sum (pt=+l in these early experiments) was equal to the torque required to offset gravity, no motion

toward the new goal was achieved despite the large change in the desired weight position.

27



Field Control Actual
Stutr Drv. Signal Robot stateSReinforcemen Ar
Liea NeuronAr
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The control architecture of our early experiments, schematically shown in Figure 3.1-2,

used either one D-R neuron, or a pair of D-R neurons as in the mass/spring experiments, to

generate each control signal to the robot arm. The primary drive was always a light feedback loop

capable of producing stable motions, but incapable of achieving high performance. The acquired

drives were functions of sensed and/or commanded data. The objective was to enable D-R to sort

the conditioned stimuli and determine which could be used to predict and reinforce the action of the

primary drive, such that as the system learned, performance would improve.

The major problem with this architecture for control systems work is that it uses neurons

which are responsible for both learning and motor control. As we saw in Section 2.3, the neuronal

output is piecewise constant after the weights have converged, and would generally become simply

constant if we used one of the 'complete' receptive field structures discussed in Section 2.2 to form

the conditioned stimuli. Only in the case where the basis functions are incomplete or otherwise not

representative of the primary drive will the final result be more c ,mplex, but this obscures the

natural relationships and should not be depended on in practice.

The combination of CMAC receptive field structures and continuous feedback signals

produced an additional problem for D-R. Out of hundreds of trajectory tracking and disturbance

rejection experiments that we performed during the early part of our program, weights often

diverged or produced limit cycle instabilities. This is because piecewise constant acquired drives

and continuous primary drives do not work well together when used with the D-R learning

mechanism. We discuss the details of this problem and its remedy in the next section.
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3.2 Progression to Current Implementation

The first alteration we made to our early control architecture was the incorporation of a

separate motor neuron responsible only for the calculation of the control signals to the robot arm.

The inputs to the motor neuron, as shown in Figure 3.2-1, are identical in form and number to

those of the D-R neuron, and are simply weighted and summed to produce the neuronal output.

They include an n-dimension feedforward signal and a scalar feedback signal. We assume here that

the weights for the feedforward signals are downloaded at regular intervals (every cycle appexr

best) from a corresponding D-R neuron so that complex weight lernming by the motor neuron is not

required. We further assume that the weight for the feedback signal is equal to one, and that

complex feedback calculations are not performed by the motor neuron.

As also shown in Figure 3.2-1, the motor neuron requires a receptive field structure which

is identical to that of the D-R neuron. In order to be well formulated, the inputs to this structure

need to occupy the same input space S as the D-R neuron, and they need to be at least dimensionally

'equivalent' to those of the D-R neuron. For example, the ith component of s(.) for each neuron

can represent the desired and actual versions, respectively, of the same signal, but must not

represent radically different signals. The weighted sum of the outputs of the receptive field

structure represents the total contribution of the feedforward controller to the control signal that is

sent to the robot arm. As will be seen below, the control signal generated by the motor neuron can

be used to actuate the robot arm, but also can be used by the D-R neuron to learn the functions

required in the feedforward controller.
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We tried a large number of different network topologies and settled on the one illustrated in

Figure 3.2-2. This topology appeared to work well, and is similar to the CMAC-based version

proposed by Miller, Gilanz, & Kraft (1987). Generally, in feedforward strategies, it is implied that

there is a separate feedback controller, either connected in series or in parallel with the feedforward

controller. The feedforward block is used to predict the large control signals required to accurately

track the desired state. Since noise, disturbances and other inaccuracies corrupt this process, a

feedback controller is also required to correct for any small errors in the prediction. In our case, the

feedback controller is also responsible for maintaining stability with low performance expectations,

and its correction to the feedforward signal enables continuous learning. Note that the output of the

D-R neuron that is used in this architecture is the set of weights that is transferred to the motor

neuron.
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In the process of changing topology, we also abandoned CMAC receptive field structures

because they often caused serious stability problems with our continuous primary drives. These

problems occur during periods of continuous change in the primary drive with no change in

receptive field patterns. In this case, our equation 2.3-7 provides no useful information because

Axi(t)=O, i = 1,...,n for all t in this period. In addition, we see from equations 2.3-1 and 2.3-2 that

n
Ay(t) = Au(t) + g xi(t-1)Awi(t) - AO(t) (3.2-1)

i=l

and

Awi(t+1) = Ay(t) ca(t), i = I,...,n, (3.2-2)

respectively. Since it is likely that at(.)>O during portions of this period for some i e (1 ,...,n}, it is

clear that Awi(.) varies directly with Ay(-) which varies directly with Au(-), all in an uncontrolled

manner. Setting gI=-I helps this situation by forcing Au(.) to compete with the Awi(-), i= 1,...,n in

equation 3.2-1, but does not eliminate the possibility of instabilities occurring as a result of these

periods. On the other hand, the use of continuous basis functions, such as our splines of order

m>1, does prevent this situation since at least one basis function always changes at every time-step

when the system is in motion. The utility of equation 2.3-7 is also improved due to the continuity.

The selection of the parameter g. was the only other significant change which took place in

transitioning to this architecture. Setting gt=- 1 had the advantage that the weights transferred from

the D-R neuron would correspond directly to those required by the motor neuron for producing the

feedforward term. With It=+l, the weights would have to be inverted in sign. More importantly,

according to equation 2.3-7, setting g=- 1 had stability advantages when used with our continuous

basis elements because only a few of the Axi(.)=O, i = 1,...,n are active at one time and the sign of

each is highly temporally correlated. Since, for computational purposes, we used relatively large

receptive fields, activated by many contiguous training examples, we had to set 4.=-1 to achieve

stable behavior. Note, however, convergent weight behavior at every step-time can only be

achieved through the use of a modification to D-R like the one that produced equation 2.3-9.
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3.3 On-Line Learning Architecture

The network topology we eventually chose, shown in Figure 3.3-1, is similar to the one

proposed by Kawato, Uno, Isohe, & Suzuki (1988). The only difference between this and the one

of the prior section is that the desired state is used in place of the actual state as the input to the

receptive field structure of the D-R neuron. This modification improves the system's performance

on repeated trials of the same desired trajectory because it guarantees that one remains in the portion

of input space for which learning has occurred. The modification would not be necessary,

however, if either the feedback loop was very strong or the learning mechanism was very fast

because in these cases the actual state will accurately track the desired state. Moreover, it does not

appear to be necessary whenever one-dimensional input spaces are used to construct the conditioned

stimuli. The modification was important to the success of the experiments presented in Section 4.3.
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4. Applications

Early control system testing on hardware indicated that the use of complex test beds would

not have allowed a thorough investigation of the underlying mechanisms for D-R learning, and

consequently would have impeded our search for a proper implementation of D-R for control

system applications. Hence, simple test beds were fabricated to prevent important relationships

from being obscured during experimentation, and to enable us to obtain a better understanding of

the resulting system behavior. The results presented in this chapter are a sampling of our successes

with D-R, and were obtained using a two degree-of-freedom manipulator test-bed. Simulation

results are also presented, and compared with those obtained from hardware.

Our performance evaluations of D-R based controllers always began with detailed computer

simulations of the actual robot arm and its control system. Using identical software structures for

the simulation and the real-time code allowed control software to be directly transferred from the

computer simulations to the physical control computers without alteration, and had the effect of

promoting safer, more reliable system operation while reducing the time required for software

integration on the manipulator test-bed. In addition, since evaluations of D-R networks could be

performed faster and at less risk in simulation than on the hardware, many more tests could be

performed than was possible in the same amount of time using the test-bed alone. In this way the

test bed could also be reserved for evaluating effects only found in a hardware implementation.

This chapter is divided into three sections: Section 4.1 describes mechanical, electrical and

software aspects of our planar arm test-bed; Section 4.2 details the results of our intermediate servo-

level control experiments; and Section 4.3 details the results of the trajectory-level control

experiments which utilized our latest control system architecture for on-line learning.
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4.1 Planar Arm Test-Bed

Our planar arm is a two degree-of-freedom manipulator constructed in a horizontal plane

from the upper arm and elbow joints of the anthropomorphic arm test-bed shown in Figure 4.1- 1.

Each joint has a maximum speed of approximately 500 deg/s, and is driven by a brushless pulse-

width modulated DC motor through a 59:1 cycloidal cam gear reducer. They are equipped with

resolvers on the motor shafts for sensing angular position, and limit switches used for generating

emergency stops near physical hardstops and for the calibration of angular position measurements.

The test bed is also equipped with an optical end-point sensing system that measures the Cartesian

position of the tip of the robot arm.

The computer control system in this test bed consists of a standard nineteen inch electronics

rack with motor controllers, amplifiers, signal conditioning hardware, safety system hardware, and

a VME backplane. A single 68030 microprocessor-based VME board with a floating point

coprocessor performs all of the real-time control and safety functions. A second 68020-based

processor board is used to collect and store performance data so that it can be uploaded to the host

Sun workstation for subsequent analysis and plotting. The analog-to-digital and digital-to-analog

conversions are handled on a separate board in the VME backplane, under the direct control of the

68030 processor board.

Sun workstations are used to develop our control system software in portable C language

modules that can be compiled and run both in our simulations on the Sun as well as in the real-time

controller on the 68000 series microprocessors. The Sun workstation communicates with the

VxWorks operating system running on the two processors in the VME backplane using a standard

ethernet interface. Thus, our software is compiled on the Sun, and then conveniently and quickly

downloaded to the two control system processors. The ethernet link between the Sun workstations

and the control system processors provides the added capability of directly transferring collected

data from the control system to the Sun or any other computer on our ethernet network. We can

thus take advantage of commercially available software packages for design and analysis such as

MATLAB and for graphing such as our X-windows based plotting program called xgraph.
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4.2 Servo-Level Control Experiments

The D-R implementation shown in Figure 3.2-2 was used in this study of the on-line

learning of servo-level control. With it, the D-R neuron learns to approximate the inverse dynamics

of the planar robot arm. By transferring the weights learned in each control cycle to the -notor

neuron, the motor neuron predicts the control signals required to accurately track the desired state.

In this case, the control signals are voltage inputs to the joint actuators, the desired state contains

commanded joint angles and joint velocities, and the 'system' is the planar robot arm with its

actuation devices. Since the actuators for this arm have sufficient internal feedback to essentially

decouple the interaction between the joints, one-dimensional piecewise-linear B-splines were used

to develop the receptive field structure. Per the discussion in Section 2.3, the B-spline closest to the

origin was eliminated in order to force the output of the D-R neuron to zero.

The feedback control law for the servo-level control experiments was simply a constant gain

on each of the joint position errors. The gains required to produce stable motions in the absence of

learning were simple to establish. This feedback law works because the actuators look like velocity

control devices so that the resultant joint velocities are roughly proportional to the actuator input.

Since the proportionality factor may be nonlinearly dependent on the state of the system, the task of

the D-R learning mechanism is to compute it as a function of the state of the system.

This implementation of D-R was first studied in simulation and then transferred to the planar

robot arm test-bed in order to validate the concept on hardware. In particular, a series of trajectory-

tracking experiments were conducted to test how well the D-R neurons could learn to accurately

follow commanded data in the presence of real sensor noise, unmodeled actuator and arm

dynamics, sample-data effects, computational delays and parameter errors. We found that D-R was

successful with hardware utilizing this implementation, and these results were found to be in close

agreement with those predicted frorm simulation studies.

For reference, a sample of simulation time-histories are shown in Figures 4.2-1 to 4.2-5,

and some of the corresponding hardware results are shown in Figures 4.2-6 to 4.2-9. Positions are

expressed in degrees, velocities in degrees-per-second and time in seconds.
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Figure 4.2-1a. Commanded and Sensed Upper Arm Positions.
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Figure 4.2-l1b. Commanded and Sensed Elbow Positions.
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Figure 4.2-2a. Commanded and Sensed Upper Arm Velocities.
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Figure 4.2-2b. Commanded and Sensed Elbow Velocities.
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Figure 4.2-3a. Upper Arm Position Weights.
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Figure 4.2-4a. Upper Arm Velocity Weights.
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Figure 4.2-5a. Output of the D-R Neuron for the Upper Arm Joint.
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Figure 4.2-5b. Output of the D-R Neuron for the Elbow Joint.
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4.3 Trajectory-Level Control Experiments

The D-R implemen.itdon shown in Figure 3.3-1 was used in this study of the on-line

learning of trajectory control. With it, the D-R neuron learns to approximate the inverse kinematics

of the robot arm under control. Using the weights learned in each control cycle by the D-R neuron,

the motor neuron can predict the control signals required to accurately track the desired state. In this

case, the control signals are 'desired' manipulator joint angles, the desired state is the commanded

Cartesian position of the tip of the robot arm, and the 'system' consists of the planar robot arm and

its servo-level control system. To accommodate the dimensionality and coupling of the components

of the desired state, two-dimensional tensor-product B-splines were used to develop the receptive

field structure. To avoid the elimination of basis elements, equation 2.3-6 was used to calculate the

neuronal threshold required to force the output of the D-R neuron to zero.

The nonlinear feedback control law for the trajectory-level control experiments had the form

of a two-dimensional matrix-vector product, one component of which was used in each motor

neuron. The matrix is an approximation to the inverse Jacobian of the kinematic plant, and is

computed with only real-time data using a standard rank-one update formula similar to that found in

Strang (1986). The vector is a simple linear feedback element consisting of the proportional and

integral feedback of the Cartesian position errors. It was easy to find feedback gains which

produced stable motions, in the absence of learning, using this controller.

This implementation of D-R was first studied in simulation and then transferred to the planar

robot arm test-bed in order to test the concept on hardware. We found that D-R was successful

with the hardware utilizing this implementation, and these results were found to be in close

agreement with those predicted from simulation studies.

For reference, a sample of simulation time-histories are shown in Figures 4.3-1 to 4.3-3,

and time-histories captured from the hardware experiments are shown in Figures 4.3-4 to 4.3-8.

Here, positions are expressed in inches and time in seconds.
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Figure 4.3-lb. Commanded and Sensed X-Y Positions With Continued Learning.
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After 144 Seconds Learning
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Figure 4.3-2a. Output of the D-R Neuron for the Upper Arm Joint.

This is the first 144-second interval of learning.
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After 288 Seconds Learning
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Figure 4.3-2b. Output of the D-R Neuron for the Upper Arm Joint (Continued).

This is the second 144-second interval of learning.
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After 144 Seconds Learning
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Figure 4.3-2c. Output of the D-R Neuron for the Elbow Joint.

This is the first 144-second interval of learning.
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After 288 Seconds Learning
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Figure 4.3-2d. Output of the D-R Neuron for the Elbow Joint (Continued).

This is the second 144-second interval of learning.
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After 144 Seconds Learning
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Figure 4.3-3a. Change in the Output of the D-R Neuron for the Upper Arm Joint.
This is the first 144-second interval of learning.
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After 288 Seconds Learning
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Figure 4.3-3b. Change in the Output of the D-R Neuron for the Upper Arm Joint (Continued).

This is the second 144-second interval of learning.
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After 144 Seconds Learning
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Figure 4.3-3c. Change in the Output of the D-R Neuron for the Elbow Joint.

This is the first 144-second interval of learning.
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After 288 Seconds Learning
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Figure 4.3-3d. Change in the Output of the D-R Neuron for the Elbow Joint (Continued).

This is the second 144-second interval of learning.
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Figure 4.3-.4a. Comnmanded and Sensed X-Axis Positions Without Learning.
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Figure 4.3-4b. Commanded and Sensed X-Axis Positions With Learing.
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Figure 4.3-5a. Commanded and Sensed Y-Axis Positions Withu learing.

36

F 4 C and S • * I

a, a $ 63



4-

------ ---------------
3-

2 p

- --- -- --- -- --

14' ' .- --- - -

3-

2-

0---------

--- --- - - -

14 15 16 17 18 19 20 21 22

Figure 4.3-6b. Commanded and Sensed X-Y Positions With Learning.
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Figure 4.3-7a. Output of the D-R Neuron for the Upper Ann Joint.
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Figure 4.3-7b. Output of the D-R Neuron for the Elbow Joint.
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Figure 4.3-8a. Commanded and Sensed X-Axis Positions With Continued Learning.
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Figure 4.3-8b, Commanded and Sensed Y-Axis Positions With Continued Learning.
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Figure 4.3-8c. Commanded and Sensed X-Y Positions With Continued Learning.
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5. Conclusions and Recommendations

Our results indicate that Drive-Reinforcement (D-R) based neural networks can be

successful at learning control functions in real-time with hardware. We demonstrated, for example,

the ability of a D-R neuronal system to learn servo-level and trajectory-level controls for a robotic

mechanism. Since our control architectures are generic, this suggests that D-R would also be

effective in a broad class of control system applications outside the robotics arena. Because D-R is

an unsupervised learning procedure, it has the advantages of being able to make real-time

adjustments for unmodeled or time-varying dynamic and kinematic effects that model-based

controllers ignore. Moreover, its 'slope matching' ability makes it very different from the standard

"function matching' neural networks commonly used. Thus, D-R may be preferred for feedback

law adaptation because it is the construction of gains and not function values which are the most

important and common component of the direct feedback path.

In the course of this work, we have described convergence properties of the D-R learning

mechanism which guide implementation strategies, and we have specified network topologies and

receptive field structures which allow for the learning of robust control laws. We recommend the

continuation of both theoretical and experimental work on D-R because we believe it is at a point in

its development where many benefits can be obtained in a short period of time. Particular emphasis

should be placed on the development of modifications which accelerate convergence, the use of D-R

in pure feedback control strategies, and additional applications of D-R to real world sensor-based

control problems.
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